Indoor localization based on subarea division with fuzzy C-means
نویسندگان
چکیده
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملSemi-supervised Kernel-Based Fuzzy C-Means
This paper presents a semi-supervised kernel-based fuzzy c-means algorithm called S2KFCM by introducing semi-supervised learning technique and the kernel method simultaneously into conventional fuzzy clustering algorithm. Through using labeled and unlabeled data together, S2KFCM can be applied to both clustering and classification tasks. However, only the latter is concerned in this paper. Expe...
متن کاملFuzzy C-Means Clustering-Based Speaker Verification
In speaker verification, a claimed speaker’s score is computed to accept or reject the speaker claim. Most of the current normalisation methods compute the score as the ratio of the claimed speaker’s and the impostors’ likelihood functions. Based on analysing false acceptance error occured by the current methods, we propose a fuzzy c-means clusteringbased normalisation method to find a better s...
متن کاملNetwork Administrator Assistance System Based on Fuzzy C-means Analysis
In this research we design a network administrator assistance system based on traffic measurement and fuzzy c-means (FCM) clustering analysis method. Network traffic measurement is an essential tool for monitoring and controlling communication network. It can provide valuable information about network trafficload patterns and performances. The proposed system utilizes the FCM method to analyze ...
متن کاملClassifying Japanese Polysemous Verbs based on Fuzzy C-means Clustering
This paper presents a method for classifying Japanese polysemous verbs using an algorithm to identify overlapping nodes with more than one cluster. The algorithm is a graph-based unsupervised clustering algorithm, which combines a generalized modularity function, spectral mapping, and fuzzy clustering technique. The modularity function for measuring cluster structure is calculated based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Distributed Sensor Networks
سال: 2016
ISSN: 1550-1477,1550-1477
DOI: 10.1177/1550147716661932